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A fermionic version of Dyson's hierarchical model is defined. An exact renor- 
malization group transformation is given as a rational transformation of 
two-dimensional parameter space. Two branches of nontrivial fixed points are 
described, one of which bifurcates from the trivial "Gaussian" branch. The 
existence of the thermodynamic limit for these branches of fixed points is 
investigated. 
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1. INTRODUCTION 

In this paper  we discuss a fermionic analog  of the hierarchical  tp4-model for 
which an act ion of the renormal iza t ion  group (RG)  t ransformat ion  is 
described as an exact ra t ional  t ransformat ion  in a two-dimensional  
pa ramete r  space. The simplicity of descr ipt ion of renormal iza t ion  group 
flow is explained by a combina t ion  of two factors: the local proper ty  of 
hierarchical  b lock-spin  t ransformat ion  and the fact that  the spins are 
elements of G r a s s m a n n  algebra.  Using the fact that  local potent ials  are 
conserved under  b lock-spin  t ransformat ion,  Bleher and Sinai, ~ Collet  and 
Eckmann,  ~2) and Gawedzk i  and  Kupia inen  t3) carr ied out  r igorous detai led 
investigations of hierarchical  bosonic models. On  the other  hand  using nice 
combina to r ic  proper t ies  of fermionic models,  Gawedzki  and Kupia inen  t41 
and Fe ldman  etal .  ~5~ accomplished a r igorous  RG analysis of the G r o s s -  
Neveu model.  
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Our observation is motivated by the work of Dorlas, ~6~ who proposed 
a simple fermionic hierarchical model. In distinction to Dorlas' model, the 
"Gaussian" part of our model is nondegenerate and we study the RG trans- 
formation for all possible values of n (size of an elementary block of the 
hierarchical lattice) and all possible values of RG parameter ~. The sim- 
plicity of the RG transformation enables us to give an exact description of 
all branches of fixed points of the renormalization group and to investigate 
the existence of the thermodynamic limit for these points. One of nontrivial 
branches bifurcates from the trivial "Gaussian" one and can serve as an 
elementary illustration of an e = c t - 3 / 2  (or e = 4 - d )  expansion. It is 
interesting that the second branch of fixed points does not bifurcate from 
the "Gaussian" branch and the existence of an analogous branch in the 
bosonic case remains unknown. The infinite-volume limit exists for some 
part of this branch, for n > 13. The nonexistence of the thermodynamic 
limit for the nontriviai fixed point in ref. 6 probably is connected with the 
low value of n in this model. 

The global RG flow in the whole plane of coupling constants, the 
problem of the large-scale limit, and other critical properties of this model 
will be discussed in a subsequent paper. 

2. RG T R A N S F O R M A T I O N  IN H I E R A R C H I C A L  (q3, tlJ) a M O D E L  

We recall some definitions of hierarchical model. 
Let t~ = {1,2,...}, Vk..~={j:j t~,(k-1)nS<j<~kn"},  k t ~ ,  s t Y ,  

and let s(i,j)=min{s: there is k sugh that i t  V k ..... /~ Vk..~}. The hierar- 
chical distance d(i,j), i, j t  N, is defiried by the formula 

0, i=j  
d(i,j)= n.~.~i.j,, iv~J 

Let us consider the 4-component fermionic field (~l( l ) ,  ffl(i), ~2(i), ~b2(i)), 
i t  ~d, where the components are generators of a Grassmann algebra. We 
shall use the following notations: 

~(i) = (t~ i(i), t~2(i)) , t~(i) = (~9 ~(i), ~92(i)) 

~(i) n(i)=~t(i)q,(i)+~2(i)q2(i), i t ~  

By analogy with the bosonic case the block-spin renormalization group 
transformation is defined by the formula 

(~'(i), ~b'(i))-r~,(~, ~b)(i)=n -~'/2 ~ ((k(j), O(j)) (1) 
.i~ v,.t 
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where c~ is the renormalization group parameter. Then it is easy to see that 
the "Gaussian" fermionic field with zero mean and binary correlation 
function 

( ~ k k ( i ) @ ( j ) ) = 6 ~ . t b ( i , j ) ,  k , l =  1,2 

! - n  1 - "  1 - n  - I  ( 2 )  
d ' - Z ( i , j ) ,  i e j ,  b ( i , i )  ~ r  b(i, j ) =  1 - n  =-2 1 - n  " - 2 '  

is invariant under the renormalization group transformation. We shall 
denote this "Gaussian" state by ( . ) o .  

Rigorously speaking, ( . ) o  is a state only for e < 2, as 

(~kj,( i ,)~j ,( i t) . . .~Oi. ,( i ,~)(Oj. ,( im))o=det((~kj~(it)  - . ,, %,(t3 )O)k.l=, >/0 

for any il ..... i . , , Jt ..... j . ,  i f only ~ < 2. For e > 2, ( . ) o  is a quasistate, but 
here we do not attend to this distinction. 

Let us redenote V~. N by AN and let ~l N be the Grassmann subalgebra 
generated by 4 .n  N generators corresponding to this volume. 

To study non-"Gaussian" states we use the Gibbs representation of the 
states. Let us consider, for instance, the restriction of the "Gaussian" state 
( " ) o  on the volume AN. Then the following statement is true: 

I_emma 1. Let F(~, ~O)eg.l N. Then 

O >o = Zff.~ f F(~, ~b) exp{ - Ho.N(~, 6, a)} &O d~ (F(~,  

where the anticommuting integration rule is defined, following Berezin, c7~ 
by setting I ~, d~b,= 1, ~ d~b,= 0 

Ho.N(~, ~', ~ )=  ~ do.N(/, j)  ~(i) ~k(j) 
i, j E A N  

1 - - n  " - I  
d o . N ( i , j ) = d o ( i , j ) - c ( N  ), d o ( i , j ) -  l_n_------Td "( i , j ) ,  

1 --rt -1 (1 - -ha - I )  2 
do(i, i) = - -  c (N)  = n -=~N+ l~ 

1 - - n  - = '  (1 - - n - = ) ( 1  - - n  - I )  

(3) 

i ~ j  

Z o . u = ~  exp{ - Ho.N(~, 6, cr d~b d~ 

ProoL We-must prove that the matrix (b( i , j ) ) i . j~A ~ is the inverse of 
(do.u(/, J))i4EA,~" This means we must prove that 

b( i , j )  d o ( j , k ) = 6 i . ~ + c ( N )  Y'. b ( i , j ) ,  i, k e A u  (4) 
je  AN j e  AN 
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Let, for instance, i 4: k. It is easy to see that  

1 - n  - t  
b(i, j)  l _ n ~ _ 2 n  NIl-I) 

j e A N  

To calculate the left part  of (4) it is convenient to use the part i t ion 
A N = A t w A z w A 3 u A  4, where Al = { j e A u : s ( i , j ) > s ( i , k ) } ,  A z =  
{ j e A N : S ( i , j ) = s ( j , k ) = s ( i , k ) } ,  A3 = { j e A N :  s ( i , j )<s ( i , k ) } ,  and A 4 =  
{ j e  AN: s(j, k) < s(i, k)}. Let 

I,,,= ~ b( i , j )do( j ,k ) ,  m = 1 , 2 , 3 , 4  
j e Am 

Let us consider, for instance, 11: 

o 1 - n  ~ - "  1 - n ' -  
: or--9 r/(Ct - 2)s  - -  Y / -  ~~ 

I,  ~ ~ 1 - -n  - 1 - - n - "  
s = s l i ,  k ) +  1 j : s ( i , j ) = s  

1 - n  1 - ~  1 - n  " - I  

- 1 - n  ~-2 1 - n  -~ (n-~S(i'kl+l)-n-~U+'~) 

In similar way we obtain 

1 - - n  l - ~  1 - - n  ~ - j  
Ix= 1 --n ~-2 1 - n  -----------Tn-sli'kl(1 

l - - r t - I  1--r / l -~ - s f f . k )  

[3= 1 - - n  " -2  1 - - n  - "  n 

l _ n - I  l _ n  , - 1  
I4 = 1--n -~ 1--n ~-'-n-~''kl 

From all this there follows the validity of (4) for i4:k. 
Note that Zff .~exp{-Ho.u(q~,~b;~)}  can be considered as the 

Grassmann-valued  analog of a "density" function. The Hamil tonian  (3) 
depends on N because it describes the restriction of the "Gauss ian"  state 
( " ) o  on the subvolume Au. 

The most  general local potential  which we can construct  for the 
4-component  fermionic field is given by the form 

U(~, ~; r, g)=  r(~,~b t + ~2~k2) + g~,~b,62~2 

We define the Gibbs  state ("expectation value") pu(r, g) on the 0AN as 

(pN(r, g) ) ( r ) =  Z[v '(r, g ) ( F e x p {  - -HN } )o 

HN(~, q/; r, g )=  ~ U((k(i), ~b(i); r, g) (5) 
ie  A N 

Zu( r ,  g ) =  ( e x p { - H u }  )o 



Hierarchical  Fermionic Model 809 

F ~ N  [We assume that ZN(r, g)r I f  p is a state on 9.IN, then the 
renormalized state p' is defined on oA N_ ~ by 

p'(F) = p(F(r,((/, ~))) 

T h e or e m 1. Let (r + 1 )2 _ gin v~ O, (r + l)2 _ g ~ O. Then 

p~(r, g)=pN_,(r' ,g')  

where 

Proof. 
integral 

r ,=n=- , [  (r+_!)2--g ) 
\ ( r +  1) 2 -  g/n (r+ 1)-- l 

\ ( r+ 1)'---g/n] g 

(6) 

(7) 

Let (~', ~b')=r=(~, ~O) be given by (1). Let us consider the 

I =  (F(6 ' ,  ~b') exp( --HN(~, ~k; r, g)})o 

= Zu(13' 0)-L f F(6', ~') 

x e x p { -  HO.N( ~, ~b, ~ ) -  HN(~, r r, g)) d~b d~ 

where 

d~bd~= I-I d@(i)d~(i)= 1--I d@t(i)d~(i)d~b2(i)d~2(i) 
iE A~, i~ AIV 

We introduce new variables (q(i), r/(i)), i t  Au, by 

(~(i), tO(i))=n "/2- ' ( ~ ' ( [ ( i -  1)/n] + 1), ~,'([-(i- 1)/n] + 1)) 

+ (fl(i), q(i)) (8) 

where [ . ]  denotes an integer part. Using 

(r/(i), f/(i)) = 0, k~AN_z 
i~ Vk.= 

we find that 

Ho.N((J, qJ,~)=Ho.N_,(~.',ql,~)+ ~ ~ fl(i)n(i) (9) 
k E A N -  I i E V k .  I 
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I= (Zu(O, O) co(n, N, et))-' 

x f F(~', ~k') exp{ --Ho. u_ ,(~', ~O', a)} 

k E A N - I  - -  2 
• [1 ( f3( i .~, .  (fl(i),q(i)))exp { (,.v, fl(i) 

+ Z U(n~/2-'(~'(k),O'(k))+(fl(i),q(i));r,g))} 
iE Vk, I 

1-~ dq(i) dO(i)) 1-] d~'(k) dt~'(k) X 

ie  Vk.j / k ~ f l N - n  

co(n, N, co) is a "Berezinian" of the linear change of variables (8). Here 
6(% rt) is a delta function defined by the condition 

f 6(0, n)f(fl, ~) dq dO =f(O, O) 

simple integral representation for the 6-function will be The following 
convenient: 

6(% q)=q,rl,qzqz= f exp(-((tq, + ... + ~2q2)) d~ d~ 

Thus, we have 

I= (Zu(O, O) co(n, N, or)) -I 

x f r (~ ' ,  ~b')exp{ - H o . u _  ,(6',  ~k', co)} 

x I-I (f  T((~'(k), r ~, r d~ d~) 
k ~ A N -  I 

x I-[ d~'(k) d~'(k) 
k ~ A N - I  

where 

T(d', "r q,, r162 
+ U(n ~/2- '(~', ~O')+ (fl, q); r, g))} dq d o 
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r/= (r/),)12), 0 = (0~, 02). By direct calculation one can verify the following 
relation: 

f exp{ - ( ~ r / +  r  U((O, q); r, g))} dq dO 

= (r2-g,  e x p { - U ( ~ , ~ ; - ~ r g , ( r 2 g g ) i ) }  

r 2 - g  # 0. Introducing the variables 

(~', ,7 ' )  = n ~ a -  ~(~', r  + (% ,1)  

~' = ~ -  n=a-'~b', ~ '=  ~ +n~/- ' - '~  , 

and twice using (10), we obtain 

(lO) 

f T((6', ~b'); ~, r d{ d ( =  C(r, g) exp{ -- U((~', ~,'); r', g')} 

where 

C(r, g)=n((r+ 1)2-  g) "-x (n(r+ 1)2-  g) (11) 

r' and g' are given by (6), (7). This proves the theorem. 
It is easy to see that fixed points of the map (r, g)--. (r', g'), distinct 

from r(ct) = g(~) ~ 0, are described by the formulas 

r+(~) = ~ / n - - n ~ - '  r +(cx)(1 + r+(oQ) 2 
, g+(ct)=l+r+(ct)+i/x/~, ~ # 1 ,  ~ # 1 / 2  (12) I -- v/'~ 

r ( a )=  - - ' v / ~ - - n ' - '  r_(a)(1 + r _ ( a ) )  2 
, g_(a)=l+r_(cl)_i /x /~ 7, c t# l  (13) l + x / ~  

For a = I all points of the tupe g = 0, r # - I  are also fixed points. 
A simple calculation shows that the differential of the RG transforma- 

tion on the " + "  branches of fixed points is given by the matrix 

/2(1T-x)(ITnx)x/~ , -  4(1Tnx)2(r:t +l)  \ 
/ - - - (--~_ 1--j--~ ~ )- x,/n i ( n -  l ) x  ) D(r~(ct),g• ( 1 T _ x ) 2 ( r •  f~ -T -2(1-T-x)(l-~nx) 
\ -  -g-i  (,,-1) x 

(14) 

where x = n 1/2 -a .  
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The stability analysis is simplified by the observat ion that  
det(D(r_+(~), g_+(~))= +x/~ .  F rom this analysis it follows that all points 
of the " + "  branch with the exception of r = 3/2 are hyperbolic; r = 3/2 is 
a bifurcation value. At the point (r+(3/2),g+(3/2))=(O,O) the " + "  
branch bifurcates from the trivial "Gauss ian"  one [ r ( ~ ) =  g ( c 0 = 0 ] .  In 
addition, the spectrum of D(r+ (~), g+(=)) ,  1/2 < ~ < 3/2, lies beyond the 
unit circle. All points of the " - "  branch are hyperbolic also. 

In the next section we shall find the range of the value = for which 
the thermodynamic  .limit of the models defined by the Hamil tonians  
HN(~,t~;r+_(c~),g+_(c~)) exist. We note that the correlation functions 
(pu(r+_, g_+))(F), F~9A u, are well defined only if ZN(r+_(ct), g+(~x))r  
Unlike the bosonic case, there exist a possibility of the vanishing of the 
statistical sum ZN for real values of  the coupling constants. F rom the proof  
of Theorem 1 it follows that 

ZN(r, g) = cj(r, g; n, N, ~) ZN_ l(r', g') (15) 

where c,(r, g; n, N, ct)=c2C(r,g) "~-', c2 does not depend on r and g. 
Therefore, if Zo(r, g ) = 0 ,  then the same holds for ZN(r, g). Note  that for 
" + "  and " - "  branches of the fixed points the factor c~(r, g;n,N,c~) is 
different from 0. 

Direct calculation shows that  

2 

Z~ g ) = \ - I  - n - '  ,) ] ----"n----[,) - 

The equation Zo(r_(~), g _ ( ~ ) ) = 0  has no real root for n ~<4. In all other 
cases the equations 

Z0(r + (cQ, g+(c0)  = 0, 

have real roots 

~+(n)  = 2 - l o g , ,  1 + 2.______~ 
2 + ,,/~ ' 

Zo(r_(o~), g_(c0)  = 0 

c~ _ (n) = 2 - log.  - -  
1 - 2  x /~  

Therefore we shall exclude ~ = 7 + ( n )  from the description of the " + "  
branch and e = cc_(n), n > 4, from the description of the " - "  branch. 

3. T H E  T H E R M O D Y N A M I C  L I M I T  

The thermodynamic  limit of the fermionic model exists if all correla- 
tion functions (5) have a limit when N-- .  or. This means that  we investigate 
the thermodynamic  limit for the free boundary  condition. One can 
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Fig. 1. The " + "  and " - "  branches of the RG fixed points (n = 16). The full lines correspond 
to the fixed points for which the thermodynamic limit exists. The point A is excluded as a zero 
of the statistical sum. The point ( - 1, 0), corresponding to ct = 1, is excluded also because it 
lies on the critical parabola. 

show (4'6) tha t  in o u r  m o d e l  it will suffice to inves t iga te  the in f in i te -vo lume 

l imit  of  the co r r e l a t i on  funct ions  

u~(r, g) =pN(r, g)(~b~(i) ~ , ( i )  + ff2(i) ~2( i ) )  

and 

u2(r, g)=pN(r ,  g ) ( - ~ ( i )  ~,(i) ~b2(i) ~2( i ) )  

i 6 A  u (u I and  u 2 do  no t  d e p e n d  o n i ) .  In the  fo l lowing  it will be conven i en t  

to dea l  wi th  the  vec to r  us(r, g):  

= {u~(r, g) 
uN(r, g) \u2(r ,  g,/i/ 

I . e m m a  2. W e  have  

where  

us(r, g) = A(r, g) us_  l(r', g') + s(r, g) 

l i a r  ar l s(r, g)= l Or 
A ( r ' g ) = g | a r  ag' ' lnCIr, 

\ Og / ag 

(16) 

822/76/3-4-5 
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ProoL Differentiating (15) with respect to r and dividing by the same 
equality (15), we find 

Pu(r, g) ( i Z  ~kl(i) ~l(i) + ~2(i) ~2(i) ) 

(O/Or){ C"U-'(r, g)} ZN-,(r ' ,  g') 
C"U-'(r, g) Zu- l (  r', g') 

) +Pu- l ( r ' , g ' ) \O  r ~ O,( i )~ , ( i )+02( i )~2( i )  
i ~ A N - I  

+pN_,(r ' ,  g') (Og' \-~r Z r (i) I~l(i) r ~2(i) 
i E A N - I  

/ 

o r  

N 1 n u -  I 0 In C(r, g) 
n uu(r, g)= Or 

- i f  or' i O ' ) , g 2 i t +n ~ ~-~rUH_,(r',g')-t - 63"~UN_l[r,g') 

In a similar fashion we obtain the second row of (16). 
Using (14), we see that 

A(r+, g+)=A+_ = 

with x = II 1/2-=. 

2(1 -T-x)(l T-nx) I t 
v/-n(n - 1 > x - v / n  
(1 ~X)2 (r+ + 1) -1 

.,/'~(n - l ) x  

_4(l-T-nx) 2 (r + + 1) \ 
. . . .  

_2(I  T-x)( l~nx)  I I  
+ ~ : i ~  +~/ 

Let 2~ax(q0=max(12~l,  12~1), where 2~, 2+ are the eigenvalues of  
the matrix A•  We denote by I• the range of ~ such that 2~,ax(e)< 1. 

L e m m a  3. For  the " - "  case I _ ( n ) =  0 if n ~< 13. In all other cases 

where 

I •  +, I + A ,  +) 

A, + = l o g . { a +  + ( a ~ : -  1)'/2}, a•  - - -  
( n - l )  2 n + l  

t - -  
4n - 2  x//-s 

Proof. We note that d e t ( A + ) =  +_n -3/2. Now 

,~? =b•  + (b~ ~_,,-,/2),p_, ~,f =b• - (b~  -V-,,- ~/~) '/2 
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where 

b + = ~  y 1 + - - +  = 
_ _ - x//-~ , Y_+ x//-~(n _ 1 ) x 

If the eigenvalues of the matrix A + are nonreal, then they are con- 
+ - -  3 / 4  jugate and )~max = n  < 1. Further  we suppose that b~ - -n -3 /2~>0 .  

Using the estimate 

2 w/-n-T- (n + 1 ) 
y •  

, f n (n  - 1 ) 
(17) 

we obtain that b_ > 0  and min(,;t~-, 2 ~ ) = 2  + > 2 b +  > - 1 .  Therefore the 
inequality 2+ax(C0 >/1 is equivalent to 

2~ = b +  + {bZ_+ - det(A • 1 (18) 

Thus, to find the range i •  it is necessary to solve the 
inequality (18) with the additional condition 

b~: - det(A • )/> 0 (19) 

The system of inequalities (18), (19) is equivalent to the inequality 

b+/>  {1 +de t (A  • 

After elementary transformations, it is be found that 

y +_ >>. 1 - l/n (20) 

In the " - "  case the inequality (20) follows from the inequality (17) for 
n~< 13. In other cases the quadratic (in x) equation y•  = 1 - 1In has roots 
x~ = (1/x//-n){a• + ( a ~ : -  1)~/2}, x , =  l/nx~. The lemma is proved. 

Let us denote I'+(n) = l+ (n ) \ {  1, 1/2, ~+(n)} and I'_(n) = I_ (n ) \{1  }. 
It is easy to check that for all n >  1, ~+(n)~I+(n)  and ~_(n) r  

Theorem 2. The hierarchical fermion model, defined by the Hamil- 
tonian Ho.u(~,  @, c~)+ HN(~,@; r_+ (a), g• (c0), has a thermodynamic limit 
if and only if eeI '~(n) .  

ProoL One can show that 

uo,r g,__ (?n ZoJ r ,n ZoJ gJ 
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Iterating (16), we obtain 

N - - I  

u N ( r • 1 7 7  N + • + y. A~s•  
i = O  

where 

Uo ~ -- Uo(r • g +_)= 
1+1/  

(r+ + 1){(2 ,v/-n +_ n) x - 1/n -T- 2/x/~ } 

( 2 ) 
• - ( 1  4- lt,,/-~)t(r+_ + 1) 

1-T-x ( 2{nx+_(n-2)} ) 
s•  - s ( r + ,  g • 1 7 7  + 1 ) n ( n -  1) x \ - { x 4 - ( n - Z ) } / ( r •  + 1) 

The first part of the theorem follows from Eq. (21) and Lemma 3. 
We can rewrite (21) as 

.Nit• g•  {.o ~ +(A• - E ) - '  s• } -(A_+ - E )  -1 s• 

(21) 

If A •  is degenerate, one can show that the model has no infinite- 
volume limit. Thus, if 2~, x > 1, then the thermodynamic limit exists only if 

e = u f f  + (A•  - E ) - '  s• 

is the eigenvector of A• with eigenvalue less than 1. It is easy to see that 
the condition of the collinearity of the vector e and A • e leads to a bulky 
algebraic equation on x. For the " - "  branch this equation has no positive 
real roots. For the " + "  branch x = n  -~ (~=  3/2) is the only admissible 
root, but 3/2~I '+(n)  for all n. The theorem is proved. 

We see that the " + "  branch bifurcates at the point ct o = 3/2 from the 
"Gaussian" trivial branch (r = 0, g - 0 ) .  It is interesting to note also that 
this branch can be described in terms of Wilson's e = 4 -  d expansion (d is 
the dimensionality). Indeed, let us put n = m d and call d the dimension of 
the hierarchical lattice. We put ~ ( d ) =  ( d +  2)/d (this choice corresponds to 
the Laplace kinetic term in the real case). Then 

g+ (ct(d)) = r + (ct(d)){ 1 + r+ (ct(d))}2 
1 + r+ (ct(d)) + m -a/2 

m d / 2  _ m 2 

r+(~(d))  = l _ m a / 2  , 

We see that this branch bifurcates from the "Gaussian" branch (d changes 
continuously) at d = 4 .  For m~>3, ~(3)=5/3e1 '+(n) ,  but c t ( 2 ) = 2 r  
for any m. 
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